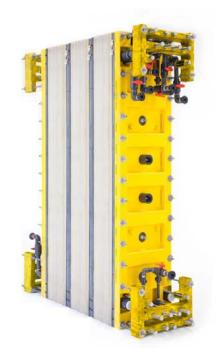


Ammonia Splitter Treatment of Wastewater Treatment Plant Centrate & Landfill Leachate

projects@saltworkstech.com

www.saltworkstech.com

Copyright © 2016 Saltworks Technologies Inc.

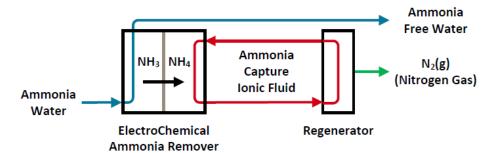

Ammonia Treatment and Technology

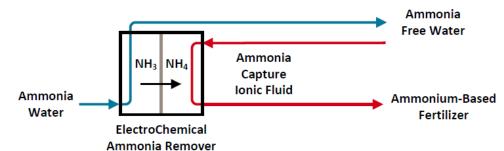
The Project:

- Remove & destroy ammonia in Wastewater Treatment Plant (WWTP)
 Centrate circuit; beneficially increase capacity of WWTP
- Overcome challanges of biological processes through use of a direct controllable electrochemical process

The Ammonia Splitter Technology:

- Destroys ammonia, produces nitrogen gas (N₂)
- Reliable, adjustable electrochemical treatment
- Excess capacity: add more power to remove more NH₃
- Compact modular system
- Fully automated
- Solar photovoltaic direct power option




Two options: destroy ammonia or make fertilizer

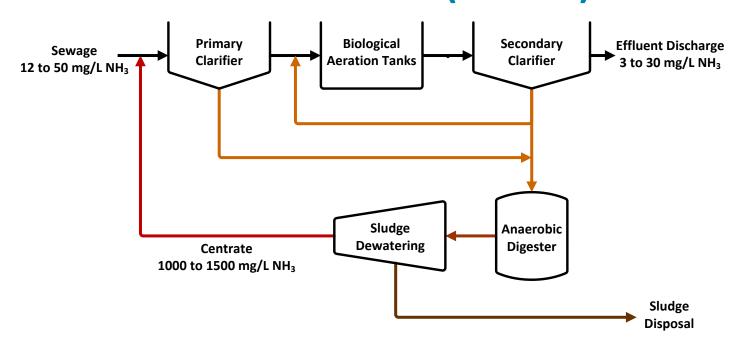
	Process Option	By-product	Pros	Cons
1.	Full destruction Electrolyze to nitrogen gas	N ₂ (air)	Full destruction, no waste disposal liability	Higher cost and energy. Solar PV offset option.
2.	Fertilizer production Conversion to (NH ₄) ₂ SO ₄	Ammonium Sulfate (NH ₄) ₂ SO ₄	Lowest cost option	Low value by- product (7% solution)
3.	High quality fertilizer production Conversion to NH ₄ NO ₃	Ammonium Nitrate (NH ₄)NO ₃	High quality by- product, lower cost than full destruction	Process more complex.

Ammonia
Fertilizer ByProduct Option

Confidential Information

Copyright © 2016 Saltworks Technologies Inc.

Regenerator for Ammonia Destruction Option

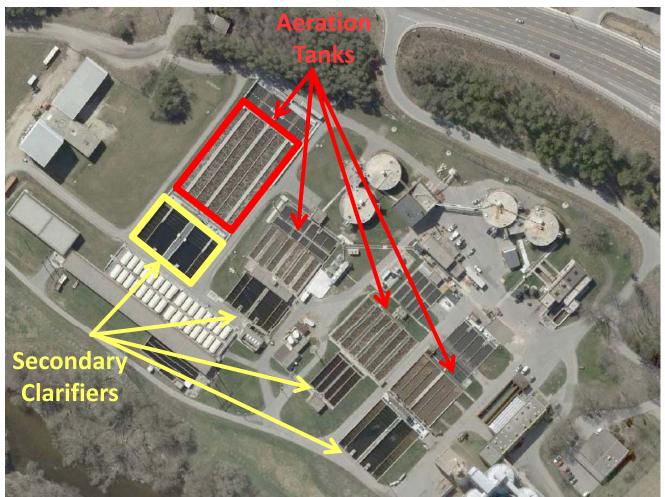

Regenerator: Readily available off the shelf equipment

- Solar photo-voltaics option to offset energy requirements
- DC power used directly, no expensive inverters required

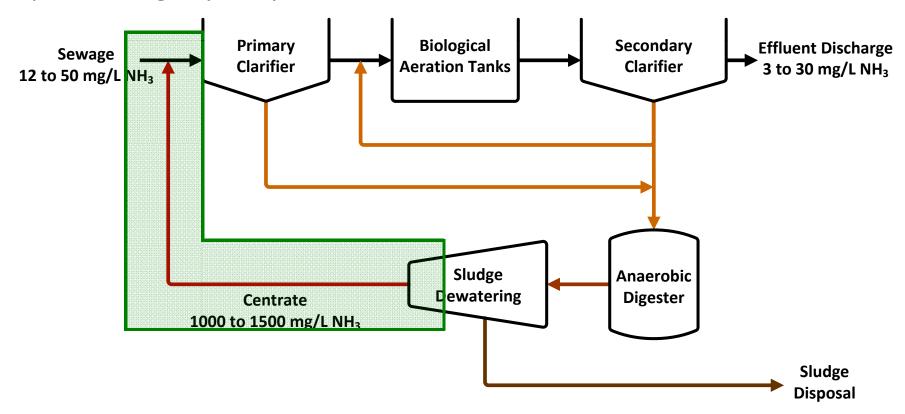
Wastewater Treatment Plant (WWTP)

Algae Bloom from WWTP Effluent Discharge

- Increased nutrient loads discharged to local water bodies
- Algae blooms damage aquatic ecosystems

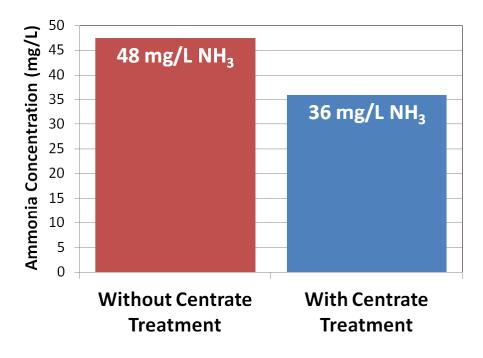


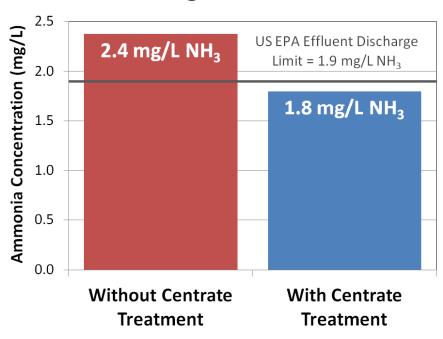
WWTP: 3 options for increased nutrient loads


- 1. No Action: Increased nutrient discharge \rightarrow exceed discharge limits
- 2. More aeration tanks and secondary clarifiers -> footprint

Option 3: Treat Side Stream (Centrate)

- Centrate recycle accounts for 1% WWTP flow, but 20% of ammonia load
- Treat centrate to remove ammonia mass, and increase ammonia processing capacity




WWTP Side Stream (Centrate) Treatment

- Saltworks' Ammonia Splitter to destroy NH₃ to N₂ gas
- Low foot print and fit into existing plant

Reduce Ammonia Load in Main WWTP

Meet EPA Discharge Limits Treating 1% of Inlet Flow

Built on Electrodialysis Reversal (EDR)

- Well established technology; 2nd most dominant membrane desalination system after reverse osmosis
- 50 years operational history
- Organic fouling resistant (no membrane water flux & pressure difference)
- Self "cleaned" through reversal
- Easy to service: plate and frame
- Modular

Ammonia Splitter builds on EDR

- Special membranes inside
- Patented process

Advanced Ion Exchange Membranes

- Ductile and conductive base polymer
- pH 0-13, 0-60°C
- 1/10th thickness of traditional membranes but tougher and smoother (less fouling potential)
- High multivalent ion transport, high selectivity
- Selective ion removal tuned for ammonia removal

ElectroChem Commercial Production and Services

ElectroChem Stack Production and Assembly

Quality Assurance

Customer Training Center

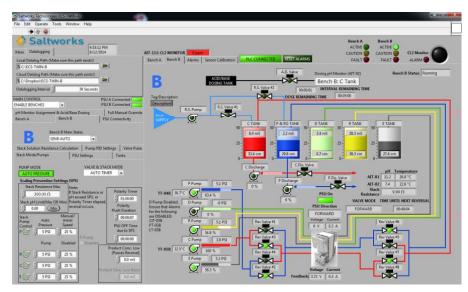
24/7 Remote Customer Support

Testing on WWTP Centrate

- Centrate from Municipal WWTP
- Pretreatment for TSS
- 50 μm microfiltration

Parameter (mg/L)	RAW WWTP Centrate	
рН	8.07	
Total Suspended Solids	900	
Ammonia-N	1300	
Total Kjeldahl (TKN)	1250	
Ortho-Phosphate	186	
Total Phosphorus	204	

WWTP Centrate

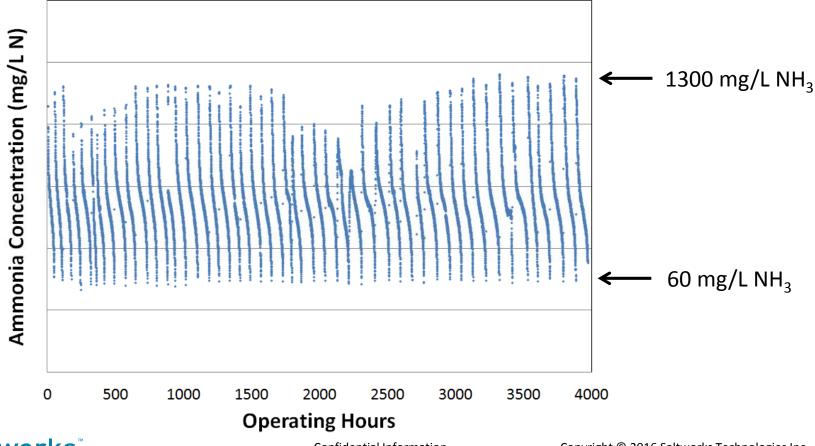

50 μm self cleaning filter for > 50 um solids

Ammonia Splitter Micro Pilot Setup on Centrate

- Fully automated DAQ: pH, stack voltage and current
- Manual checks: non-DAQ data, observations, confirm sensor calibration
- Analytical: internal bench top analysis and independent 3rd party analysis

Pilot HMI

Ammonia Splitter Test Stack

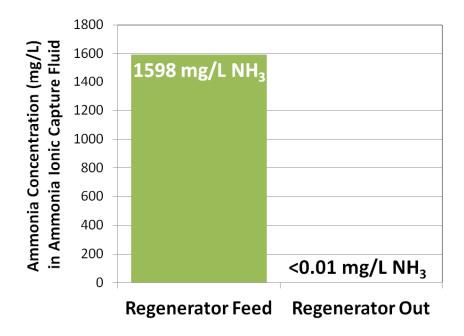

Confidential Information

Copyright © 2016 Saltworks Technologies Inc.

Micro Ammonia Splitter Pilot

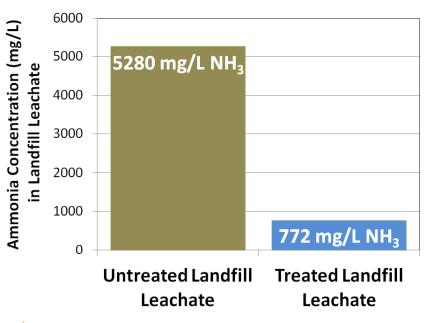
Centrate: Ammonia Splitter Micro Pilot Test Results

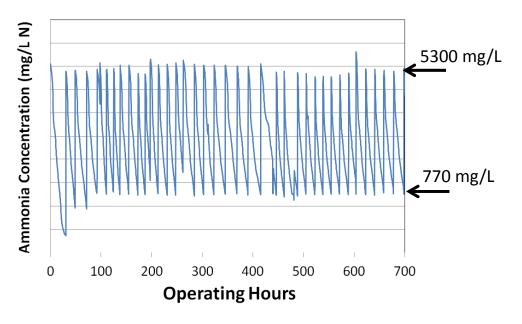
- Reliable continuous 24/7 operation for 4000+ hrs (6 months)
- Removed ammonia in centrate from 1300 mg/L to 60 mg/L
- Automated self cleaning and clean in place maintained reliable operation



Centrate: Ammonia Splitter Analytical Results

- 95% of ammonia in centrate removed
- Some phosphate also removed ~10%
- Regenerator destroyed all of the ammonia to N₂ gas
- 100% recovery: to date, no waste by-product generated


Parameter (mg/L)	Untreated WWTP Centrate	Treated WWTP Centrate	% Reduction by Ammonia Splitter
рH	8.07	7.27	-
Ammonia-N	1300	64	95%
Total Kjeldahl (TKN)	1250	116	91%
Ortho-Phosphate	186	167	10%
Total Phosphorus	204	177	13%



Ammonia Splitter Micro Pilot: Landfill Leachate

- Ammonia Splitter tested on landfill leachate for 3 months
- Removed ammonia in leachate from 5280 mg/L to 772 mg/L, meeting the project requirements of reducing the ammonia load for further treatment by a downstream process
- Pilot demonstrated that Ammonia Splitter can operate on any concentration of ammonia

Conclusions

- ➤ Demonstrated reliable 24/7 operation for 6+ months
- Reliable, automated, and no fouling (self cleaning systems function well)
- ➤ Removes ammonia from wastewaters at any concentration: centrate at 1300 mg/L and leachate at 5800 mg/L, to meet any treatment goal.
- All ammonia permanently destroyed to nitrogen gas
- ➤ 100% recovery; no waste by product produced from testing to date

Ammonia Splitter Treatment of Wastewater Treatment Plant Centrate & Landfill Leachate

projects@saltworkstech.com

www.saltworkstech.com

Copyright © 2016 Saltworks Technologies Inc.